Самой важной частью Вашего компьютера, если бы Вам пришлось выбирать только одну, был бы центральный процессор (CPU). Это «мозг», который обрабатывает инструкции, поступающие от программ, операционной системы и других компонентов Вашего ПК.
1 и 0
ЦП (CPU) — это чудо инженерной мысли, но в своей основе он по-прежнему опирается на базовую концепцию интерпретации двоичных сигналов (единицы и нули). Разница в том, что вместо чтения перфокарт или инструкций по обработке с помощью наборов электронных ламп современные процессоры используют крошечные транзисторы для создания видеороликов TikTok или заполнения чисел в электронной таблице.
Основы CPU
Производство процессоров — сложный процесс. Важным моментом является то, что в каждом ЦП есть кремний (один или несколько), на котором размещены миллиарды микроскопических транзисторов.
Как мы упоминали ранее, эти транзисторы используют серию электрических сигналов для представления двоичного кода машины, состоящего из единиц и нулей. Поскольку этих транзисторов очень много, процессоры могут выполнять все более сложные задачи с большей скоростью, чем раньше.
Количество транзисторов не обязательно означает, что процессор будет быстрее. Тем не менее, это все еще основная причина, по которой телефон, который Вы носите в кармане, обладает огромной вычислительной мощностью.
Давайте поговорим о том, как ЦП выполняет инструкции на основе машинного кода, называемого «набором команд». Процессоры разных компаний могут иметь разные наборы инструкций, но не всегда.
Например, большинство ПК с Windows и современные процессоры Mac используют набор инструкций x86-64, независимо от того, процессор от Intel или AMD. Однако компьютеры Mac, дебютирующие в конце 2020 года, будут иметь процессоры на базе ARM, которые используют другой набор инструкций. Также существует небольшое количество ПК с Windows 10, использующих процессоры ARM.
Ядра, кеши и графика
Приведенная выше диаграмма взята из опубликованного в 2014 году официального документа Intel об архитектуре процессора Core i7-4770S. Это просто пример того, как выглядит один процессор — другие процессоры имеют разную компоновку.
Мы видим, что это четырехъядерный процессор. Было время, когда у процессора было только одно ядро. Теперь, когда у нас несколько ядер, они обрабатывают инструкции намного быстрее. Ядра также могут иметь так называемую гиперпоточность или одновременную многопоточность (SMT), что делает одно ядро похожим на два для ПК. Как Вы понимаете, это помогает еще больше сократить время обработки.
Ядра на этой диаграмме совместно используют так называемый кэш L3. Это форма встроенной памяти внутри ЦП. ЦП также имеют кеши L1 и L2, содержащиеся в каждом ядре, а также регистры, которые являются формой низкоуровневой памяти. Если Вы хотите понять различия между регистрами, кешами и системной оперативной памятью, ознакомьтесь с этим ответом на StackExchange.
Показанный выше ЦП также содержит системный агент, контроллер памяти и другие части микросхемы, которые управляют входящей и исходящей информацией ЦП.
Наконец, есть встроенная графика процессора, которая генерирует все те замечательные визуальные элементы, которые Вы видите на своем экране. Не все процессоры содержат собственный графический адаптер. Например, процессорам AMD Zen для настольных ПК требуется дискретная видеокарта для отображения чего-либо на экране. Некоторые процессоры Intel Core для настольных ПК также не имеют встроенной графики.
ЦП на материнской плате
Теперь давайте посмотрим, как он интегрируется с остальной частью Вашего ПК. ЦП находится в так называемом сокете на материнской плате.
Как только он вставлен в разъем, другие части компьютера могут подключаться к процессору через так называемые «шины». ОЗУ, например, подключается к ЦП через свою собственную шину, в то время как многие компоненты ПК используют шину определенного типа, называемую «PCIe».
У каждого ЦП есть набор «линий PCIe», которые он может использовать. Например, процессоры AMD Zen 2 имеют 24 полосы, которые подключаются напрямую к процессору. Затем эти полосы делятся производителями материнских плат под руководством AMD.
Например, для слота видеокарты x16 обычно используется 16 полос. Есть четыре полосы для хранения, например одно быстрое устройство хранения, такое как M.2 SSD. Как вариант, эти четыре полосы также можно разделить. Две полосы можно использовать для SSD M.2 и две для более медленного диска SATA, такого как жесткий диск или 2,5-дюймовый SSD.
Это 20 полос, остальные четыре зарезервированы для набора микросхем, который является центром связи и контроллером трафика для материнской платы. В этом случае чипсет имеет собственный набор шинных соединений, что позволяет добавлять в ПК еще больше компонентов. Как и следовало ожидать, более высокопроизводительные компоненты имеют прямое соединение с ЦП.
Как видите, процессор выполняет большую часть обработки инструкций, а иногда даже графики. Однако процессор — не единственный способ обрабатывать инструкции. Другие компоненты, такие как видеокарта, имеют собственные встроенные возможности обработки. Графический процессор также использует свои собственные возможности обработки для работы с центральным процессором и запуска игр или выполнения других задач с интенсивным использованием графики.
Большая разница в том, что компонентные процессоры созданы с учетом конкретных задач. Однако ЦП — это универсальное устройство, способное выполнять любую вычислительную задачу, которую его просят. Вот почему центральный процессор безраздельно властвует в Вашем ПК, а вся остальная система полагается на его работу.